Funder
National Natural Science Foundation of China
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference70 articles.
1. An, B., Chen, B., Han, X., & Sun, L. (2018). Accurate text-enhanced knowledge graph representation learning. In Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies, volume 1 (long papers) (pp. 745–755).
2. Hypernetwork knowledge graph embeddings;Balažević,2019
3. Bojchevski, A., Matkovic, Y., & Günnemann, S. (2017). Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 737–746).
4. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Proceedings of the 26th international conference on neural information processing systems-volume 2 (pp. 2787–2795).
5. Cai, L., Yan, B., Mai, G., Janowicz, K., & Zhu, R. (2019). TransGCN: Coupling transformation assumptions with graph convolutional networks for link prediction. In Proceedings of the 10th international conference on knowledge capture (pp. 131–138).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献