Gene selection and classification using Taguchi chaotic binary particle swarm optimization
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference65 articles.
1. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling;Alizadeh;Nature,2000
2. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays;Alon;Proceedings of the National Academy of Sciences of the United States of America,1999
3. Using mutual information for selecting features in supervised neural net learning;Battiti;IEEE Transactions on Neural Networks,1994
4. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers;Cawley;Pattern Recognition,2003
5. Data mining and Taguchi method combination applied to the selection of discharge factors and the best interactive factor combination under multiple quality properties;Chang;The International Journal of Advanced Manufacturing Technology,2006
Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An interactive feature selection method based on multi-step state transition algorithm for high-dimensional data;Knowledge-Based Systems;2023-12
2. Early stage autism detection using ANFIS and extreme learning machine algorithm;Journal of Intelligent & Fuzzy Systems;2023-08-24
3. A practical three-stage hybrid feature selection method using discrete state transition algorithm;Sixth International Conference on Advanced Electronic Materials, Computers, and Software Engineering (AEMCSE 2023);2023-08-16
4. Feature selection using symmetric uncertainty and hybrid optimization for high-dimensional data;International Journal of Machine Learning and Cybernetics;2023-06-29
5. RFE and Mutual-INFO-Based Hybrid Method Using Deep Neural Network for Gene Selection and Cancer Classification;Proceedings of International Conference on Computational Intelligence;2022-10-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3