1. Allan, M., Shvets, A., Kurmann, T., Zhang, Z., Duggal, R., Su, Y.-H., Rieke, N., Laina, I., Kalavakonda, N., Bodenstedt, S., Herrera, L., Li, W., Iglovikov, V., Luo, H., Yang, J., Stoyanov, D., Maier-Hein, L., Speidel, S., & Azizian, M. (2019). 2017 Robotic Instrument Segmentation Challenge. ArXiv:1902.06426 [Cs]. http://arxiv.org/abs/1902.06426.
2. SegNet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Transactions on Pattern Analysis and Machine Intelligence,2017
3. Vision-based and marker-less surgical tool detection and tracking: A review of the literature;Bouget;Medical Image Analysis,2017
4. Detecting surgical tools by modelling local appearance and global shape;Bouget;IEEE Transactions on Medical Imaging,2015
5. Buslaev, A., Seferbekov, S., Iglovikov, V., & Shvets, A. (2018). Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Utah, 18-22 June 2018, 197–1973. 10.1109/CVPRW.2018.00035.