Author:
Fan Hongqin,Kim Hyoungkwan,AbouRizk Simaan,Han Seung Heon
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference13 articles.
1. AEM, Association of Equipment Manufacturers (2004). 2004–2005 Outlook for construction equipment business. Milwaukee, WI, USA.
2. Breunig, M., Kriegel, H., Ng, R., & Sander, J. (2000). LOF: Identifying density-based local outliers. In Proceedings of the ACM SIGMOD 2000 international conference on management of data. Dalles, TX, USA.
3. Fan, H., Kim, H., & AbouRizk, S. (2005). A non-parametric outlier mining algorithm for detecting anomalies in construction equipment database. In Proceedings of the sixth construction specialty conference (10p). CSCE, Toronto, May.
4. Fan, H., Zaiane, O. R., Foss, A., & Wu, J. (2006). A nonparametric outlier detection for effectively discovering top-N outliers from engineering data. In Pacific-Asia conference on knowledge discovery and data mining (PAKDD) (pp. 557–66).
5. Foss, A., & Zaiane, Z. (2002). A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets. In Proceedings of the 2002 IEEE international conference on data mining (ICDM’02). Maebashi City, Japan.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献