Physics-guided deep neural network to characterize non-Newtonian fluid flow for optimal use of energy resources

Author:

Kumar Abhishek,Ridha Syahrir,Narahari Marneni,Ilyas Suhaib Umer

Funder

Ministry of Higher Education, Malaysia

Universiti Teknologi PETRONAS

Publisher

Elsevier BV

Subject

Artificial Intelligence,Computer Science Applications,General Engineering

Reference96 articles.

1. Numerical simulation of laminar flow of non-Newtonian fluids in eccentric annuli;Adariani,2005

2. Ahmed, R. (2005). Experimental Study and Modeling of Yield Power-Law Fluid Flow in Pipes and Annuli. Retrieved from .

3. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation;Ahmed,2008

4. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning;Alipanahi;Nature Biotechnology,2015

5. A Takagi-Sugeno type neuro-fuzzy network for determining child anemia;Allahverdi;Expert Systems with Applications,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3