Funder
National Natural Science Foundation of China
Reference53 articles.
1. Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1534–1543).
2. Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4413–4421).
3. EDGCNet: Joint dynamic hyperbolic graph convolution and dual squeeze-and-attention for 3D point cloud segmentation;Cheng;Expert Systems with Applications,2024
4. 3D image recognition using new set of fractional-order Legendre moments and deep neural networks;El Ogri;Signal Processing: Image Communication,2021
5. Engelmann, F., Kontogianni, T., & Leibe, B. (2020). Dilated Point Convolutions: On the receptive field size of point convolutions on 3d point clouds. In IEEE international conference on robotics and automation (pp. 9463–9469).