Single domain generalizable and physically interpretable bearing fault diagnosis for unseen working conditions

Author:

Kim IljeokORCID,Wook Kim Sung,Kim Jeongsan,Huh Hyunsuk,Jeong Iljoo,Choi Taegyu,Kim Jeongchan,Lee SeungchulORCID

Funder

Institute of Civil Military Technology Cooperation

Ministry of Trade, Industry and Energy

Defense Acquisition Program Administration

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Elsevier BV

Subject

Artificial Intelligence,Computer Science Applications,General Engineering

Reference35 articles.

1. A New Interpretable Learning Method for Fault Diagnosis of Rolling Bearings;Zhang;IEEE Transactions on Instrumentation and Measurement,2020

2. Electric Locomotive Bearing Fault Diagnosis;Shao;IEEE Transactions on Industrial Electronics,2018

3. An end-to-end model based on improved adaptive deep belief network and its application to bearing fault diagnosis;Xie;IEEE Access,2018

4. A Method of Rolling Bearing Fault Diagnose Based on Double Sparse Dictionary and Deep Belief Network;Guo;IEEE Access,2020

5. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network;Chen;IEEE Transactions on Instrumentation and Measurement,2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3