1. Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan, H., Ver Steeg, G., & Galstyan, A. (2019). Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In International conference on machine learning (pp. 21–29).
2. Learning heterogeneous knowledge base embeddings for explainable recommendation;Ai;Algorithms,2018
3. Berg, R. v. d., Kipf, T. N., & Welling, M. (2018). Graph convolutional matrix completion. In Proceedings of the ACM SIGKDD International conference on knowledge discovery and data mining (pp. 1–7).
4. Bordes, A., Usunier, N., García-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating Embeddings for Modeling Multi-relational Data. In Advances in neural information processing systems (pp. 2787–2795).
5. Cao, Y., Wang, X., He, X., Hu, Z., & Chua, T. (2019). Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences. In The world wide web conference (pp. 151–161).