1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous DistributedSystems. CoRR, abs/1603.04467. http://arxiv.org/abs/1603.04467.
2. Agravat, R. R., & Raval, M. S. (2020). Brain Tumor Segmentation and Survival Prediction. https://doi.org/10.1007/978-3-030-46640-4_32.
3. Ahammed Muneer, K. V., & Paul Joseph, K. (2018). Performance analysis of combined k-mean and fuzzy-c-mean segmentation of MR brain images. In Lecture Notes in Computational Vision and Biomechanics (Vol. 28). https://doi.org/10.1007/978-3-319-71767-8_71.
4. Overall survival prediction in glioblastoma with radiomic features using machine learning;Baid;Frontiers in Computational Neuroscience,2020
5. Deep learning radiomics algorithm for gliomas (DRAG) model: A novel approach using 3D UNET based deep convolutional neural network for predicting survival in gliomas;Baid,2019