1. Automated Pest Detection with DNN on the Edge for Precision Agriculture;Albanese;IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2021
2. Cai, Z., & Vasconcelos, N. (2018). Cascade R-CNN: Delving Into High Quality Object Detection. 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, 6154–6162. https://doi.org/10.1109/CVPR.2018.00644.
3. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., … Lin, D. (2019). MMDetection: Open MMLab Detection Toolbox and Benchmark. ArXiv Preprint ArXiv:1906.07155.
4. Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., & Zitnick, C. L. (2015). Microsoft coco captions: Data collection and evaluation server. ArXiv Preprint ArXiv:1504.00325.
5. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1251–1258.