Incorporating feedforward neural network within finite element analysis for L-bending springback prediction
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference47 articles.
1. Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming;Abbassi;Materials & Design,2013
2. Elastic & plastic and inelastic characteristics of high strength steel sheets under biaxial loading and unloading;Andar;ISIJ International,2010
3. Free vibration analysis of an adhesively bonded functionally graded double containment cantilever joint;Apalak;Journal of Adhesion Science and Technology,2014
4. Neuro fuzzy model for predicting the dynamic characteristics of beams;Bachi;Acta Mechanica Solida Sinica,2014
5. Frequency response function based damage identification using principal component analysis and pattern recognition technique;Bandara;Engineering Structures,2014
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning applications in sheet metal constitutive Modelling: A review;International Journal of Solids and Structures;2024-10
2. Specifics of Formability in Recent Developments of Tailor-Welded Blanks;National Academy Science Letters;2023-05-19
3. Experimental, analytical and parametric evaluation of the springback behavior of MART1400 sheets;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2022-09-08
4. Optimal Process Design of an Optimal, Single-Stage, Symmetrical L-Bending Process Employing Taguchi Method with Finite Element Method, and Experimental Verification Thereof;International Journal of Precision Engineering and Manufacturing;2022-03-21
5. Spatial variable curvature metallic tube bending springback numerical approximation prediction and compensation method considering cross-section distortion defect;The International Journal of Advanced Manufacturing Technology;2021-09-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3