1. Adorno, H. G., Posadas-Durán, J. P., Sidorov, G., & Pinto, D. (2018). Document embeddings learned on various types of n-grams for cross-topic authorship attribution. Computing, (pp. 1–16).
2. Alsulami, B., Dauber, E., Harang, R. E., Mancoridis, S., & Greenstadt, R. (2017). Source code authorship attribution using long short-term memory based networks. In Computer Security – ESORICS 2017–22nd European Symposium on Research in Computer Security, Oslo, Norway, September 11–15, 2017, Proceedings, Part I (pp. 65–82).
3. Argamon, S., & Juola, P. (2011). Overview of the international authorship identification competition at PAN-2011. CEUR Workshop Proceedings, 1177.
4. Bagnall, D. (2015). Author identification using multi-headed recurrent neural networks. In L. Cappellato, N. Ferro, G.J.F. Jones, & E. San Juan (Eds.), CEUR Workshop Proceedings (pp. 1–9). CEUR-WS volume 1391.
5. Cross-domain authorship attribution using pre-trained language models;Barlas,2020