Unveiling vulnerabilities in deep learning-based malware detection: Differential privacy driven adversarial attacks
-
Published:2024-11
Issue:
Volume:146
Page:104035
-
ISSN:0167-4048
-
Container-title:Computers & Security
-
language:en
-
Short-container-title:Computers & Security
Author:
Taheri RahimORCID,
Shojafar MohammadORCID,
Arabikhan Farzad,
Gegov Alexander
Reference37 articles.
1. Arp, D., Spreitzenbarth, M., Gascon, H., Rieck, K., Siemens, C., 2014. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. In: Proc. of NDSS.
2. Overcoming the lack of labeled data: Training malware detection models using adversarial domain adaptation;Bhardwaj;Comput. Secur.,2024
3. Gradient masking and the underestimated robustness threats of differential privacy in deep learning;Boenisch,2021
4. Evadedroid: A practical evasion attack on machine learning for black-box android malware detection;Bostani;Comput. Secur.,2024
5. Contagio dataset,2019