Author:
Koga Ryoichi,Koide Shingo,Tanaka Hiromu,Taguchi Kei,Kugler Mauricio,Yokota Tatsuya,Ohshima Koichi,Miyoshi Hiroaki,Nagaishi Miharu,Hashimoto Noriaki,Takeuchi Ichiro,Hontani Hidekata
Funder
Japan Society for the Promotion of Science
Reference40 articles.
1. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association;Abels;J. Pathol.,2019
2. Automated diagnosis of lymphoma with digital pathology images using deep learning;Achi;Ann. Clin. Lab. Sci.,2019
3. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms;Alaggio;Leukemia,2022
4. Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood, F., 2022.Scaling vision transformers to gigapixel images via hierarchical self-supervised learning, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16144-16155.
5. DARPA, 2016.Explainable artifical intelligene (xai).〈https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf〉.(Accessed 23 January 2024).