Adaptive-stabilized finite element methods for eigenvalue problems based on residual minimization onto a dual discontinuous Galerkin norm
-
Published:2024-09
Issue:
Volume:
Page:113421
-
ISSN:0021-9991
-
Container-title:Journal of Computational Physics
-
language:en
-
Short-container-title:Journal of Computational Physics
Author:
Behnoudfar PouriaORCID,
Hashemian Ali,
Deng Quanling,
Calo Victor M.
Reference54 articles.
1. K.-J. Bathe, E. L. Wilson, Large eigenvalue problems in dynamic analysis, Journal of the Engineering Mechanics Division 98 (6) (1972) 1471–1485.
2. Y. Saad, Numerical methods for large eigenvalue problems: revised edition, SIAM, 2011.
3. M. Chu, G. Golub, Inverse eigenvalue problems: theory, algorithms, and applications, OUP Oxford, 2005.
4. B. Irons, Structural eigenvalue problems-elimination of unwanted variables, AIAA journal 3 (5) (1965) 961–962.
5. P. Behnoudfar, G. Loli, A. Reali, G. Sangalli, V. M. Calo, Explicit high-order generalized-α methods for isogeometric analysis of structural dynamics, Computer Methods in Applied Mechanics and Engineering 389 (2022) 114344.