The Shortley–Weller embedded finite-difference method for the 3D Poisson equation with mixed boundary conditions
Author:
Publisher
Elsevier BV
Subject
Computer Science Applications,Physics and Astronomy (miscellaneous),Applied Mathematics,Computational Mathematics,Modeling and Simulation,Numerical Analysis
Reference27 articles.
1. Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems;Balakrishnan;J. Comput. Phys.,2001
2. Über die numerische Auflosung von randwert problem bei elliptischen partiellen differentialgleichungen;Batschelet;Z. Angew. Math. Phys.,1952
3. A second-order immersed interface technique for an elliptic Neumann problem;Bouchon;Numer. Methods Partial Differ. Equat.,2007
4. Approximation of solutions of mixed boundary value problems for Poisson’s equation by finite differences;Bramble;J. Assoc. Comput. Mach.,1965
5. A finite difference analogue of the Neumann problem for Poisson’s equation;Bramble;J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.,1965
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Numerical Study of the Poisson Equation with Arbitrary Domains Based on the Extrapolation Technique;Journal of Physics: Conference Series;2023-03-01
2. Optimal local truncation error method for solution of 2-D elastodynamics problems with irregular interfaces and unfitted Cartesian meshes as well as for post-processing;Mechanics of Advanced Materials and Structures;2023-01-15
3. Optimal local truncation error method for 2‐D elastodynamics problems on irregular domains and unfitted Cartesian meshes;International Journal for Numerical and Analytical Methods in Geomechanics;2022-09-13
4. The 10-th order of accuracy of ‘quadratic’ elements for elastic heterogeneous materials with smooth interfaces and unfitted Cartesian meshes;Engineering with Computers;2022-06-26
5. Optimal local truncation error method to solution of 2‐D time‐independent elasticity problems with optimal accuracy on irregular domains and unfitted Cartesian meshes;International Journal for Numerical Methods in Engineering;2022-03-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3