Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines

Author:

Rojas Alfonso,Nandi Asoke K.

Publisher

Elsevier BV

Subject

Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Signal Processing,Control and Systems Engineering

Reference17 articles.

1. Support vector machines for detection and characterization of rolling element bearing faults;Jack;Proceedings of Institution of Mechanical Engineers, Part C,2002

2. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms;Jack;Mechanical Systems and Signal Processing,2002

3. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features;Samanta;Mechanical Systems and Signal Processing,2003

4. Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where ‘unknown’ faults may occur;Li;Pattern Recognition Letters,2002

5. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines;Yang;Mechanical Systems and Signal Processing,2005

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Industry 4.0 and Meta Learning for Bearing Fault Classification;2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2022-05-04

2. Predictive Monitoring of Incipient Faults in Rotating Machinery: A Systematic Review from Data Acquisition to Artificial Intelligence;Archives of Computational Methods in Engineering;2022-03-05

3. Fault Diagnosis of Bearings Using Recurrences and Artificial Intelligence Techniques;Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems;2022-03-01

4. Time domain vibration analysis techniques for condition monitoring of rolling element bearing: A review;Materials Today: Proceedings;2022

5. Safety monitoring of machinery equipment and fault diagnosis method based on support vector machine and improved evidence theory;International Journal of Information and Computer Security;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3