Feature-level consistency regularized Semi-supervised scheme with data augmentation for intelligent fault diagnosis under small samples
Author:
Publisher
Elsevier BV
Subject
Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Signal Processing,Control and Systems Engineering
Reference33 articles.
1. Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions;Zhang;ISA Trans.,2021
2. Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis;Saufi;Meas. Sci. Technol.,2018
3. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders;Shao;Mech. Syst. Signal Process.,2018
4. A Novel Deep Learning Network via Multiscale Inner Product With Locally Connected Feature Extraction for Intelligent Fault Detection;Pan;IEEE Trans. Ind. Informatics.,2019
5. LiftingNet: A Novel Deep Learning Network with Layerwise Feature Learning from Noisy Mechanical Data for Fault Classification;Pan;IEEE Trans. Ind. Electron.,2018
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generative artificial intelligence and data augmentation for prognostic and health management: Taxonomy, progress, and prospects;Expert Systems with Applications;2024-12
2. A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples;Reliability Engineering & System Safety;2024-10
3. Self-contrastive Learning-optimized General Agent for long-tailed fault diagnosis of shipboard antennas leveraging adaptive data distribution;Measurement;2024-09
4. Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery;Engineering Applications of Artificial Intelligence;2024-08
5. Wave-ConvNeXt: An Efficient and Precise Fault Diagnosis Method for IIoT Leveraging Tailored ConvNeXt and Wavelet Transform;IEEE Internet of Things Journal;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3