Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network
Author:
Publisher
Elsevier BV
Subject
Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Civil and Structural Engineering,Signal Processing,Control and Systems Engineering
Reference42 articles.
1. S. Yan, H. Shao, Y. Xiao, B. Liu, J. Wan, Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises, Robot Cim-int Manuf. 79(2023) 102441.
2. Y. Xiao, H. Shao, Z. Min, H. Cao, X. Chen, Multiscale dilated convolutional subdomain adaptation network with attention for unsupervised fault diagnosis of rotating machinery cross operating conditions, Measurements, 204(2022) 112146.
3. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain;Xiao;IEEE ASME Trans. Mechatron.,2022
4. A hierarchical deep domain adaptation approach for fault diagnosis of power plant thermal system;Wang;IEEE Trans. Industr. Inform.,2019
5. A new deep transfer learning based on sparse auto-encoder for fault diagnosis;Wen;IEEE Trans. Syst. Man. CY-S.,2019
Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Uncertainty-guided adversarial augmented domain networks for single domain generalization fault diagnosis;Measurement;2025-02
2. Domain-augmented meta ensemble learning for mechanical fault diagnosis from heterogeneous source domains to unseen target domains;Expert Systems with Applications;2025-01
3. DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain;Reliability Engineering & System Safety;2024-12
4. Dictionary domain adaptation transformer for cross-machine fault diagnosis of rolling bearings;Engineering Applications of Artificial Intelligence;2024-12
5. A two-stage importance-aware subgraph convolutional network based on multi-source sensors for cross-domain fault diagnosis;Neural Networks;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3