Forecasting multiphase flowing bottom-hole pressure of vertical oil wells using three machine learning techniques
Author:
Publisher
Elsevier BV
Subject
Geochemistry and Petrology,Geology,Energy Engineering and Power Technology
Reference22 articles.
1. Low parameter model to monitor bottom hole pressure in vertical multiphase flow in oil production wells;Ahmadi;Petroleum,2016
2. Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool;Ahmadi;Petroleum,2015
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Production Optimization in Oil and Gas Wells: A Gated Recurrent Unit Approach to Bottom Hole Flowing Pressure Prediction;SPE Nigeria Annual International Conference and Exhibition;2024-08-05
2. Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: a case study of Moroccan High Atlas;Natural Hazards;2024-03-21
3. A Bibliometric Analysis on the Applications of Artificial Intelligence in Petroleum Engineering;2023 4th International Conference on Data Analytics for Business and Industry (ICDABI);2023-10-25
4. Flowing Bottomhole Pressure During Gas Lift in Unconventional Oil Wells;Day 1 Mon, October 16, 2023;2023-10-09
5. Bottom hole pressure prediction based on hybrid neural networks and Bayesian optimization;Petroleum Science;2023-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3