μ-Net: Medical image segmentation using efficient and effective deep supervision
Author:
Publisher
Elsevier BV
Subject
Health Informatics,Computer Science Applications
Reference52 articles.
1. NiftyNet: A deep-learning platform for medical imaging;Gibson;Comput. Methods Programs Biomed.,2018
2. Deep learning for image-based cancer detection and diagnosis: A survey;Hu;Pattern Recognit.,2018
3. A.V. Dalca, J. Guttag, M.R. Sabuncu, Anatomical priors in convolutional networks for unsupervised biomedical segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9290–9299.
4. O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 234–241.
5. M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, C. Pal, The importance of skip connections in biomedical image segmentation, in: Proceedings of the International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, 2016, pp. 179–187.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel sea-land segmentation network for enhanced coastline extraction using satellite remote sensing images;Advances in Space Research;2024-09
2. Automatic data augmentation for medical image segmentation using Adaptive Sequence-length based Deep Reinforcement Learning;Computers in Biology and Medicine;2024-02
3. Cross-domain attention-guided generative data augmentation for medical image analysis with limited data;Computers in Biology and Medicine;2024-01
4. Exploring a novel HE image segmentation technique for glioblastoma: A hybrid slime mould and differential evolution approach;Computers in Biology and Medicine;2024-01
5. Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation;IEEE Transactions on Medical Imaging;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3