1. B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), in: International Conference on Machine Learning, 2018, pp. 2673–2682.
2. S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M. Srivastava, A. Preece, S. Julier, R.M. Rao, et al. Interpretability of deep learning models: a survey of results, in: IEEE Smart World Congress 2017 Workshop: DAIS, 2017.
3. The mythos of model interpretability;Lipton;Commun. ACM,2018
4. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission;Caruana,2015
5. European Union regulations on algorithmic decision-making and a “right to explanation”;Goodman;AI Mag.,2017