An algorithm for the recovery of fetal heart rate series from CTG data

Author:

Cesarelli M.,Romano M.,Bifulco P.,Fedele F.,Bracale M.

Publisher

Elsevier BV

Subject

Health Informatics,Computer Science Applications

Reference23 articles.

1. Visual analysis of antepartum fetal heart rate tracings: inter- and intra-observer agreement and impact of knowledge of neonatal outcome;Figueras;J. Perinat. Med.,2005

2. B. Rosen, D. Soriano, T. Bylander, H. Ortiz-Zuazaga, B. Schifrin, Training a neural network to recognize artifacts and decelerations in cardiotocograms, 1996 AAAI Spring Symposium on Artificial Intelligence in Medicine, 1996.

3. Chaos and fractals which 1/f spectrum below 10(2)Hz demonstrates full-term fetal heart rate changes during active phase;Shono;Early Hum. Dev.,1991

4. G. Magenes, L. Pedrinazzi, M.G. Signorini, Identification of fetal sufference antepartum through a multiparametric analysis and a support vector machine, in: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1–5, 2004.

5. Quantification of the heart rate variability by spectral analysis of fetal well-being and fetal distress;Sibony;Eur. J. Obstet. Gynecol. Reprod. Biol.,1994

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fetal Heart Rate Preprocessing Techniques: A Scoping Review;Bioengineering;2024-04-11

2. Cardiotocography Signal Abnormality Detection Based on Deep Semi-Unsupervised Learning;Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies;2023-12-04

3. Open Data: Valuable Resources and Opportunities for the Researchers in Fetal Cardiac Monitoring;Innovative Technologies and Signal Processing in Perinatal Medicine;2023-08-19

4. A lightweight fetal distress-assisted diagnosis model based on a cross-channel interactive attention mechanism;Frontiers in Physiology;2023-03-06

5. Detection of Suspicious Cardiotocographic Recordings by Means of a Machine Learning Classifier;Bioengineering;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3