A Tutte polynomial for signed graphs

Author:

Kauffman Louis H.

Publisher

Elsevier BV

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Reference15 articles.

1. On Tutte polynomials and link polynomials;Jaeger,1987

2. On Tutte polynomials and cycles of plane graphs;Jaeger,1987

3. A polynomial invariant for links via Von Neumann algebras;Jones;Bull. Amer. Math. Soc.,1985

4. Formal Knot Theory;Kauffman,1983

5. State models and the Jones polynomial;Kauffman;Topology,1987

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neighborhood degree sum-based molecular indices and their comparative analysis of some silicon carbide networks;Physica Scripta;2024-04-10

2. The Jones polynomial from a Goeritz matrix;Bulletin of the London Mathematical Society;2022-11-14

3. M-polynomial and Correlated Topological Indices of Antiviral Drug Molnupiravir Used as a Therapy for COVID-19;Polycyclic Aromatic Compounds;2022-10-13

4. M-polynomial and Degree-Based Topological Indices of Subdivided Chain Hex-Derived Network of Type 3;Communications in Computer and Information Science;2022

5. Line Graph Links;Acta Mathematicae Applicatae Sinica, English Series;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3