An expanded mixed finite element method for generalized Forchheimer flows in porous media
Author:
Funder
National Science Foundation
Publisher
Elsevier BV
Subject
Computational Mathematics,Computational Theory and Mathematics,Modeling and Simulation
Reference36 articles.
1. Non-darcy flow and its implications to seepage problems;Basak;J. Irrig. Drain. Div.,1977
2. Wasserbewegung durch Boden Zeit;Forchheimer;Ver. Deut. Ing.,1901
3. On continuous dependence on coefficients of the Brinkman-Forchheimer equations;Çelebi;Appl. Math. Lett.,2006
4. Spatial decay estimates for flow in a porous medium;Chadam;SIAM J. Math. Anal.,1997
5. Continuous dependence and decay for the Forchheimer equations;Franchi;Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,2003
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Heat transfer characteristics of moving longitudinal porous fin wetted with ternary (Cu–Al2O3–TiO2) hybrid nanofluid: ADM solution;The European Physical Journal Plus;2023-09-28
2. A New Finite Element Space for Expanded Mixed Finite Element Method;Journal of Computational Mathematics;2023-06
3. A new expanded mixed finite element method for Kirchhoff type parabolic equation;Numerical Algorithms;2022-09-14
4. Uncoupling evolutionary groundwater-surface water flows: stabilized mixed methods in both porous media and fluid regions;Numerical Algorithms;2022-08-08
5. Domain decomposition and expanded mixed method for parabolic partial differential equations;Journal of Computational and Applied Mathematics;2022-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3