1. Palladacycles: Synthesis, Characterization and Applications,2008
2. For the most recent reviews, see: a) V. K. Jain, Cyclometalated Group-16 Compounds of Palladium and Platinum. Coord. Chem. Rev. 427 (2021) 213546. https://doi.org/10.1016/j/ccr.2020.213546. b) A. D. Ryabov, The Exchange of Cyclometalated Ligands. Molecules 26 (2021) 210. https://doi.org/10.3390/molecules26010210. c) G. Liao, T. Zhang, Z.-K. Lin, B.-F. Shi, Transition Metal-Catalyzed Enantioselective C–H Functionalization via Chiral Transient Directing Group Strategies. Angew. Chem., Int. Ed. 59 (2020) 19773–19786. https://doi.org/10.1002/anie.202008437. d) S. Rej, Y. Ano, N. Chatani, Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C bonds. Chem. Rev. 120 (2020) 1788–1887. https://doi.org/10.1021/acs.chemrev.9b00495. e) M. Kapoor, A. Singh, K. Sharma, M. H. Hsu, Site-Selective C(sp3)–H and C(sp2)–H Functionalization of Amines Using a Directing-Group-Guided Strategy. Adv. Synth. Catal. 362 (2020) 4513–4542. https://doi.org/10.1002/adsc.202000689. f) G. C. Dickmu, I. P. Smoliakova, Cyclopalladated Complexes Containing an (sp3)C–Pd Bond. Coord. Chem. Rev. 409 (2020) 213203. https://doi.org/10.1016/j.ccr.2020.213203. g) Y. Yun, J. Yang, Y. Miao, J. Sun, X. Wang, Recent Advances in Palladium(II)-Catalyzed Activation of Aromatic Ring C–H Bonds. J. Saudi Chem. Soc. 24 (2020) 151–185. https://doi.org/10.1016/j.jscs.2020.01.004.
3. For recent examples, see: a) B. S. Takale, R. R. Thakore, G. Casotti, X. Li, F. Gallou, Fabrice; B. H. Lipshutz, Mild and Robust Stille Reactions in Water Using Parts Per Million Levels of a Triphenylphosphine-Based Palladacycle. Angew. Chem., Int. Ed. 60 (2021) 4158–4163. https://doi.org/10.1002/anie.202014141. b) C. H. Lo, H. M. Lee, Synthesis and Characterization of C,C‐Type Palladacycles and Their Catalytic Application in Mizoroki-Heck Coupling Reaction. Organometallics 37 (2018) 1150–1159. https://doi.org/10.1021/acs.organomet.8b00054. c) H. Zhang, H.-Y. Wang, Y. Luo, C. Chen, Y. Cao, P. Chen, Y.-L. Guo, Y. Lan, G. Liu, Regioselective Palladium-Catalyzed C–H Bond Trifluoroethylation of Indoles: Exploration and Mechanistic Insight. ACS Catalysis 8 (2018) 2173–2180. https://doi.org/10.1021/acscatal.7b03220. d) R. Mamidala, S. Samser, N. Sharma, U. Lourderaj, K. Venkatasubbaiah, Isolation and Characterization of Regioisomers of Pyrazole-Based Palladacycles and Their Use in α-Alkylation of Ketones Using Alcohols. Organometallics 36 (2017) 3343–3351. https://doi.org/10.1021/acs.organomet.7b00478. e) V. Sable, K. Maindan, A. R. Kapdi, P. S. Shejwalkar, K. Hara, Active Palladium Colloids via Palladacycle Degradation as Efficient Catalysts for Oxidative Homocoupling and Cross-Coupling of Aryl Boronic Acids, ACS Omega 2 (2017) 204–217. https://doi.org/10.1021/acsomega.6b00326. f) Y. Juntao, Z. Shi, T. Sperger, Y. Yasukawa, C. Kingston, F. Schoenebeck, M. Lautens, Remote C–H Alkylation and C–C Bond Cleavage Enabled by an in situ Generated Palladacycle. Nature Chem. 9 (2017) 361–368. https://doi.org/10.1038/nchem.2631. g) J.-W. Xu, Z.-Z. Zhang, W.-H. Rao, B.-F. Shi, Site-Selective Alkenylation of δ-C(sp3)–H Bonds with Alkynes via a Six-Membered Palladacycle, J. Am. Chem. Soc. 138 (2016) 10750–10753. https://doi.org/10.1021/jacs.6b05978. h) C. Najera, Oxime-Derived Palladacycles: Applications in Catalysis. ChemCatChem 8 (2016) 1865–1881. https://doi.org/10.1002/cctc.201600035. i) L. A. Bulygina, N. S. Khrushcheva, Y. A. Gur’eva, A. V. Kutchin, V. I. Sokolov, Catalytic Properties of Chiral Terpenoid CN-Palladacycle in the C–C Bond Forming Reactions. Russ. Chem. Bull. 64 (2015) 436–438. https://doi.org/10.1007/s11172-015-0882-x. j) D.-L. Mo, T.-K. Zhang, G.-C. Ge, X.-J. Huang, C.-H. Ding, L.-X. Dai, X.-L. Hou, The Application of Palladacycles as Transition-Metal Catalysts in Organic Chemistry. Synlett 25 (2014) 2686–2702. https://doi.org/10.1055/s-0034-1379230.
4. For recent examples, see: a) A. Shiralinia, S. Samiee, E. Hoveizi, Synthesis and Characterization of Mononuclear Oxime-Based Palladacycles Incorporating Phosphorus Ylides: Application as a Catalyst in Suzuki Cross Coupling Reactions and Their Biological Activities. J. Coord. Chem. 74 (2021) 2542-2557. https://doi.org/10.1080/00958972.2021.1993206. b) I. Babahan, R. Firinci, N. Ozdemir, M. E. Gunay, Synthesis, Characterization and Catalytic Activity of N-Heterocyclic Carbene Ligated Schiff Base Palladacycles. Inorg. Chim. Acta 522 (2021) 120360. https://doi.org/10.1016/j.ica.2021.120360. c) D. Zhang, J. Yu, Fine Tuning of Chiral Bis(N-Heterocyclic Carbene) Palladium Catalysts for Asymmetric Suzuki-Miyayra Cross-Coupling Reactions: Exploring the Ligand Modification. Organometallics 39 (2020) 1269-1280. https://doi.org/10.1021/acs.organomet.0c00036. d) O. N. Gorunova, I. M. Novitskiy, Y. K. Grishin, I. P. Gloriozov, V. A. Roznyatovsky, V. N. Khrustalev, K. A. Kochetkov, V. V. Dunina, The Use of Control Experiments as the Sole Route to Correct the Mechanistic Interpretation of Mercury Poisoning Test Results: The Case of P,C-Palladacycle-Catalyzed Reactions. J. Organomet. Chem. 916 (2020) 121245. https://doi.org/10.1016/j.jorganchem.2020.121245. e) A. Maji, A. Singh, A. Mohanty, P. K. Maji, K. Ghosh, Ferrocenyl Palladacycles Derived from Unsymmetrical Pincer-Type Ligands
5. Evidence of Pd(0) Nanoparticle Generation during the Suzuki-Miyaura Reaction and Applications in the Direct Arylation of Thiazoles and Isoxazoles. Dalton Trans. 48 (2019) 17083-170096. https://doi.org/10.1039/c9dt03465j. f) L. Branzi, D. Franco, M. Baron, L. Armelao, M. Rancan, P. Sgarbossa, A. Biffis, Palladium(II) Complexes with N-Phosphine-Oxide-Substituted Imidazolylidenes (Poxlms): Coordination Chemistry and Catalysis. Organometallics 38 (2019) 2298-2306. https://doi.org/10.1021/acs.organomet.9b00185.