Malate as Additional Substrate for Fatty Acid Synthesis in a C4-Plant Type Developed by Salt Stress from a C3-Piant Type Maize. A Screening for Malate as Substrate for Fatty Acid Synthesis in Chloroplasts
Author:
Publisher
Elsevier BV
Subject
Plant Science,Agronomy and Crop Science,Physiology
Reference15 articles.
1. Appearance and accumulation of C4 carbon pathway enzymes in developing maize leaves and differentiating maize A188 callus;Aoyagi;Plant Physiol.,1986
2. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris;Arnon;Plant Physiol.,1949
3. Chloroplasts as a whole;Berkowitz,1985
4. Intracellular location of NADP+-linked malic enzyme in C3 plants;El-Shora;Planta,1991
5. Plastidic isoprenoid synthesis during chloroplast development. Change from metabolic autonomy to a division-of-labor stage;Heintze;Plant Physiol.,1990
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Linkage between leaf development and photosynthetic response at hyperosmotic salinity in the C-4 grass Panicum antidotale;Flora;2019-07
2. Redundancy is sometimes seen only by the uncritical: Does Arabidopsis need six malic enzyme isoforms?;Plant Science;2009-06
3. A Comprehensive Analysis of the NADP-Malic Enzyme Gene Family of Arabidopsis;Plant Physiology;2005-08-19
4. Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor;Plant Molecular Biology;2002
5. Salt and Drought Stress Effects on Metabolic Regulation in Maize;Books in Soils, Plants, and the Environment;1999-05-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3