Microc alcification Segmentation Using Modified U-net Segmentation Network from Mammogram Images
Author:
Publisher
Elsevier BV
Subject
General Computer Science
Reference37 articles.
1. P. Kaur, G. Singh, P. Kaur, 2019. Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification, Informatics in Medicine Unlocked, p. 100151.
2. A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms;Shi;Comput. Biol. Med.,2018
3. Transfer Learning from Chest X-Ray Pre-trained Convolutional Neural Network for Learning Mammogram Data;Pardamean;Procedia Comput. Sci.,2018
4. Benign and malignant classification of mammogram images based on deep learning;Li;Biomed. Signal Process. Control,2019
5. C. Marrocco, et al., 2018. Mammogram denoising to improve the calcification detection performance of convolutional nets, In: 14th International Workshop on Breast Imaging (IWBI 2018), 2018, vol. 10718: International Society for Optics and Photonics, p. 107180W.
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Vision transformer promotes cancer diagnosis: A comprehensive review;Expert Systems with Applications;2024-10
2. Computer-Aided Detection and Diagnosis of Breast Cancer: a Review;ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal;2024-06-05
3. Enhancing early breast cancer diagnosis through automated microcalcification detection using an optimized ensemble deep learning framework;PeerJ Computer Science;2024-05-29
4. A novel approach for segmentation and quantitative analysis of breast calcification in mammograms;Frontiers in Oncology;2024-04-04
5. Mammography with deep learning for breast cancer detection;Frontiers in Oncology;2024-02-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3