1. Amin, M.Z., Nadeem, N., 2018. Convolutional neural network: Text classification model for open domain question answering sys- tem. CoRR abs/1809.02479. URL: http://arxiv.org/abs/1809.02479, arXiv:1809.02479.
2. Atandoh, P., Fengli, Z., Adu-Gyamfi, D., Leka, H.L., Atandoh, P.H., 2021. A glove cnn-bilstm sentiment classification, in: 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 245–249. doi:10.1109/ICCWAMTIP53232.2021.9674171.
3. Baccianella, S., Esuli, A., Sebastiani, F., 2010. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, in: Calzolari, N., Choukri, K., Mudguard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (Eds.), Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta, European Language Resources Association. URL: http://www.lrec-conf.org/proceedings/lrec2010/summaries/769.html.
4. A BERT framework to sentiment analysis of tweets;Bello;Sensors,2023
5. Sentiment analysis from movie reviews using lstms;Bodapati;Inǵenierie des Syst‘emes d Inf.,2019