1. Using SMT for OCR error correction of historical texts;Afli,2016
2. Cai, H., Ji, X., Song, Y., Jin, Y., Zhang, Y., Mansur, M., Zhao, X., 2018. Knptc: Knowledge and neural machine translation powered chinese pinyin typo correction. URL: https://arxiv.org/abs/1805.00741, https://doi.org/10.48550/ARXIV.1805.00741.
3. Cheng, X., Xu, W., Chen, K., Jiang, S., Wang, F., Wang, T., Chu, W., Qi, Y., 2020. SpellGCN: Incorporating phonological and visual similarities into language models for Chinese spelling check. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online. pp. 871–881. URL: https://aclanthology.org/2020.acl-main.81, https://doi.org/10.18653/v1/2020.acl-main.81.
4. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D., 2020. Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.
5. Support-vector networks;Cortes;Mach. Learn.,1995