Funder
Shanghai Municipal Natural Science Foundation
Reference40 articles.
1. Deep metric learning for few-shot image classification: A review of recent developments;Li;Pattern Recognit.,2023
2. B. Shi, W. Li, J. Huo, P. Zhu, L. Wang, Y. Gao, Global- and local-aware feature augmentation with semantic orthogonality for few-shot image classification, Pattern Recognit.: J. Pattern Recognit. Soc..
3. Mppcanet: A feedforward learning strategy for few-shot image classification;Song;Pattern Recognit.,2020
4. B. Zhang, X. Li, Y. Ye, Z. Huang, L. Zhang, Prototype completion with primitive knowledge for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 3754–3762.
5. C. Chen, X. Yang, C. Xu, X. Huang, Z. Ma, Eckpn: Explicit class knowledge propagation network for transductive few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio, CVPR, 2021, pp. 6596–6605.