1. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
2. K. Pogorelov, K.R. Randel, C. Griwodz, S.L. Eskeland, T. de Lange, D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P.T. Schmidt, M. Riegler, P. Halvorsen, KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection, in: Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys ’17, 2017, pp. 164–169.
3. B. Zhang, X. Li, Y. Ye, S. Feng, R. Ye, MetaNODE: Prototype Optimization as a Neural ODE for Few-Shot Learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2022.
4. C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, 2017, pp. 1126–1135.
5. B. Zhang, X. Li, Y. Ye, Z. Huang, L. Zhang, Prototype completion with primitive knowledge for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3754–3762.