Conditions of basalt formation in the Dzhida zone of the Paleoasian Ocean

Author:

Simonov V.A.12,Gordienko I.V.3,Stupakov S.I.1,Medvedev A.Ya.4,Kotlyarov A.V.1,Kovyazin S.V.1

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akad. Koptyuga 3, Novosibirsk, 630090, Russia

2. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

3. Geological Institute, Siberian Branch of the Russian Academy of Sciences, ul. Sakh’yanovoi 6a, Ulan-Ude, 670047, Russia

4. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033, Russia

Abstract

Abstract Petrological and geochemical studies performed with invoking data on the compositions of clinopyroxenes have clarified the conditions of formation of Vendian–Cambrian basaltic complexes in the Dzhida zone of the Paleoasian Ocean (northern Mongolia and southwestern Transbaikalia). The research was based on a comparative analysis with reference igneous basaltic associations. Of special importance are our microprobe data on trace and rare-earth elements in clinopyroxenes from igneous rocks of different present-day geodynamic settings, namely, N-MORB (Mid-Atlantic Ridge, Central Atlantic), OIB (Bouvet Island, South Atlantic), WPB (within-plate tholeiitic plateau basalts of the Siberian Platform), and boninites of ensimatic arcs (Izu-Bonin island arc, Pacific). The studies have shown that the paleo-oceanic structures in the district of the Urgol guyot formed during geodynamic processes under the impact of mantle plumes on oceanic spreading crust, which resulted in oceanic basaltic plateaus and within-plate oceanic islands. All these structures were later superposed by typical island-arc structure-lithologic associations. Formation of basalt complexes in the Dzhidot guyot district proceeded with a stronger effect of enriched plume melts of within-plate oceanic islands as compared with the Urgol guyot. This is evidenced from petrochemical and geochemical data showing the development of OIB-type magmatic systems on the oceanic basement. Data on clinopyroxenes confirm the participation of mantle plume in this process, which led to the evolution of magmas from typical oceanic basalts (MORB) to plateau basalts and OIB.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3