The nature of geomagnetic anomalies in metamorphosed chromite-bearing dunites: a case study of the southern Klyuchevskoy complex, Central Urals

Author:

Sherendo T.A.1,Vdovin A.G.1,Martyshko P.S.1,Mitrofanov V.Ya.2,Alekseev A.V.3,Zamyatin D.A.3,Vazhenin V.A.4,Pamyatnykh L.A.4

Affiliation:

1. Institute of Geophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 100, Yekaterinburg, 620016, Russia

2. Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg, 620016, Russia

3. A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, per. Pochtovyi 7, Yekaterinburg, 620075, Russia

4. Ural Federal University, Institute of Natural Sciences, ul. Lenina 51, Yekaterinburg, 620083, Russia

Abstract

Abstract Chromite mineralization in metamorphosed dunites from the southern Klyuchevskoy dunite-harzburgite ultramafic complex (Central Urals) has been investigated using geomagnetic surveys along with laboratory studies of ore-forming and accessory spinels of the same genetic type. Magnetization in the study area is carried mainly by accessory Fe-Cr-spinel of a variable Fe2+(Cr2-xFex3+)O4 composition. Metamorphism caused changes in element contents and in both crystal and magnetic structure of the primary nonmagnetic accessory spinel, unlike the almost fresh ore-forming spinel. Thus, ore bodies stand against their host rocks, which is a prerequisite for the use of geomagnetic surveys for exploration of podiform chromite deposits in dunite-harzburgite complexes. Ground magnetic surveys at a test site composed of faulted rocks bearing disseminated chromite mineralization in metamorphosed dunites resolved a chromite ore zone and a fault block boundary showing up as geomagnetic anomalies. Laboratory studies using high technologies (thermomagnetic analysis at 4 to 1000 K, as well as magnetic resonance and magnetic force spectroscopy) revealed, for the first time, magnetic clusters (superparamagnetic phases) in primary nonmagnetic accessory spinel, which are responsible for the magnetic properties of the host rocks. Microscale variations in Cr-spinel correlate with the geomagnetic anomalies recorded by field surveys at the test site. © 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3