Mixing laws and causality in high frequency induction log applications

Author:

Tabarovsky L.1,Forgang S.1

Affiliation:

1. Baker Hughes, a GE Company, Houston Technology Center, 2001 Rankin Road, Houston, TX 77073, USA

Abstract

Abstract High frequency electromagnetic technologies for subsurface formation evaluation provide high spatial resolution and new opportunities for petrophysical interpretation of data. Dispersion of rock properties and up-scaling from pore to reservoir scale (homogenization) represent the two most challenging problems. In electrodynamics of porous media, various mixing and dispersion laws are used to homogenize rock properties and describe their frequency behavior. Mixing laws and dispersion have a close link to the fundamental physical principle of causality and therefore cannot be introduced arbitrarily. For any mixing/dispersion law, we need to prove that causality holds. For testing causality, we use Titchmarsh’s theorem and, particularly, one of its modifications—Kramers–Kronig relations. Causality is discussed for Debye, Cole–Cole, Havriliak–Negami, and CRIM models. Dispersion is closely related to wave propagation. Evaluation of phase and group velocities shed new light on the physics of phase and amplitude measurements in lossy media. We evaluated various definitions of both velocities and their dependence on spatial spectra or, in other words, on the arrangement of transmitting and receiving elements. To illustrate theoretical findings, we use dielectric logging as an exemplary technology. Usually, in modern dielectric tools, amplitude and phase data are acquired, for various frequencies and sensor positions. The measured phase is discontinuous at high frequencies and requires detection of discontinuity as well as unwrapping. Remarkably, one can determine formation attenuation and loss angle based on multifrequency/multisensor amplitude data and transform them into dielectric permittivity, resistivity, and true continuous phase. Transformations of exemplary tool data used in this paper are suitable for a conceptual study and are specific for a uniform formation. We intentionally do not address the accuracy of measurements and propagation of errors in the inversion process, since they are tool- and processing-specific. Different tools require joint analysis of all available data and special noise reduction techniques associated with the structure of the acquisition system.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3