Cathodoluminescence microscopy of the Kokchetav ultrahigh-pressure calcsilicate rocks: What can we learn from silicates, carbon-hosting minerals, and diamond?

Author:

Schertl H.-P.1,Neuser R.D.1,Logvinova A.M.23,Wirth R.4,Sobolev N.V.23

Affiliation:

1. Ruhr-University Bochum, Institute of Geology, Mineralogy and Geophysics, 44780 Bochum, Germany

2. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

3. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

4. Geoforschungszentrum Potsdam, Germany

Abstract

Abstract A comprehensive study of a key calc-silicate rock of complex composition, an ultrahigh-pressure metamorphic rock of the Kokchetav massif, has been performed. New thin sections were examined by cathodoluminescence microscopy, electron probe microanalysis, and transmission/analytical electron microscopy. The obtained results confirmed the presence of microdiamonds and indicative signs of ultrahigh pressures (K in clinopyroxene) for seven of the eight previously recognized layers of the sample. Only one layer (3) containing paragenesis forsterite + Ti-clinohumite + dolomite + luminescent garnet (Mg# = 86–95) + clinopyroxene free of potassium and perovskite lacks diamonds. Symplectitic rims replacing garnet in this layer are formed by spinel growing into augite clinopyroxene with a scarce impurity of sapphirine and corundum and lack hydrous minerals. Garnets (Mg# = 81–83) of the diamond-containing layers (1 and 2a) and (4–8), having Mg# = 38–53, do not exhibit luminescence. They are present, together with K-clinopyroxenes, in the Mg-calcite matrix. A distinctive feature of the symplectitic rims is abundant segregations of corundum, often needle-like, and sapphirine in the augite clinopyroxene matrix with a minor spinel impurity. The symplectitic rims contain high-Mg phlogopite and K-amphibole; the latter was found in the metamorphic rocks for the first time. The different roles of hydrous minerals at the early stages of retrograde metamorphism for different layers reflect different fluid mobilities even within a sample.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3