Affiliation:
1. Institute of the Earth’s Crust, Siberian Branch of the RAS, 128 ul. Lermontova, Irkutsk, 664033, Russia
Abstract
Abstract
We suggest a more rigorous approach to paleogeodynamic reconstructions of the Sayan-Baikal folded area proceeding from update views of the origin and evolution of island arcs and back-arc basins. Modern island arcs and attendant back-arc basins form mainly by trench rollback caused by progressive subduction of negatively buoyant thick and cold oceanic slabs. Slab stagnation upsets the dynamic equilibrium in the subduction system, which accelerates the rollback. As a result, a continental volcanic arc transforms into an island arc, with oceanic crust production in the back-arc basin behind it. As subduction progresses, the island arc and the back-arc basin may deform, and fold-thrust structures, with the involved back-arc basin and island arc complexes, may accrete to the continent (accretion and collision) without participation of large colliding blocks. When applied to the Sayan–Baikal area, the model predicts that the Riphean and Vendian–Early Paleozoic back-arc basins were more active agents in the regional geologic history than it was thought before. They were deposition areas of sedimentary and volcanosedimentary complexes and then became the scene of collision and accretion events, including folding, metamorphism, and plutonism.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献