Composition of the Earth’s core: A review

Author:

Litasov K.D.12,Shatskiy A.F.12

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract

Abstract This paper provides the state-of-the-art discussion of major aspects of the composition and evolution of the Earth’s core. A comparison of experimentally-derived density of Fe with seismological data shows that the outer liquid core has a homogeneous structure and a ~10% density deficit, whereas the solid inner core has a complex heterogeneous anisotropic structure and a ~5% density deficit. Recent estimations of the core-mantle boundary (CMB) and inner core boundary temperatures are equal to 3800–4200 K and 5200–5700 K, respectively. Si and O (up to 5–7 wt.%) are considered to be the most likely light element candidates in the liquid core. Cosmochemical estimates show that the core must contain about 2 wt.% S and new experimental data indicate that the inner core structure gives the best match to the properties of Fe carbides. Our best estimate of the Earth’s core calls for 5–6 wt.% Si, 0.5–1.0 wt.% O, 1.8–1.9 wt.% S, and 2.0 wt.% C, with the Fe7C3 carbide being the dominant phase in the inner core. The study of short-lived isotope systems shows that the core could have formed early in the Earth’s history within about 30–50 Myr after the formation of the Solar System, t0 = 4567.2 ± 0.5 Ma. Studies on the partitioning of siderophile elements between liquid iron and silicate melt suggest that the core material would be formed in a magma ocean at ~1000–1500 km depths and 3000–4000 K. The oxygen fugacity for the magma ocean is estimated to vary from 4–5 to 1–2 log units below the Iron-Wustite oxygen buffer. However, the data for Mo, W, and S suggest addition of a late veneer of 10–15% of oxidized chondritic material as a result of the Moon-forming giant impact. Thermal and energetics core models agree with the estimate of a mean CMB heat flow of 7–17 TW. The excess heat is transported out of the core via two large low shear velocity zones at the base of superplumes. These zones may not be stable in their positions over geologic time and could move according to cycles of mantle plume and plate tectonics. The CMB heat fluxes are controlled either by high heat production from the core or subduction of cold slabs, but in both cases are closely linked with surface geodynamic processes and plate tectonic motions. Considerable amounts of exchange may have occurred between the core and mantle early in the Earth’s history even up to the formation of a basal magma ocean. However, the extent of material exchange across the CMB upon cooling of the mantle was no greater than 1–2% of the core’s mass, which, however, was sufficient to supply thermochemical plumes with volatiles H, C, and S.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3