Global geodynamic evolution of the Earth and global geodynamic models

Author:

Dobretsov N.L.1

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Koptyuga 3, Novosibirsk, 630090, Russia

Abstract

AbstractThe paper is a synthesis of models for basic geodynamic processes (spreading, subduction transient into collision, mantle plumes) in relation with the Earth’s evolution and regularly changing geodynamic parameters. The main trends and milestones of this evolution record irreversible cooling of the Earth’s interior, oxidation of the surface, and periodic changes in geodynamic processes. The periodicity consists of cycles of three characteristic sizes, namely 700–800 Myr global cycles, 120, 90, and 30 Myr smaller cycles, and short-period millennial to decadal oscillations controlled by changing Earth’s orbital parameters and, possibly, also by other extraterrestrial factors. Major events and estimates of mantle and surface temperatures, heat flow, viscosity, and the respective regimes of convection and plume magmatism have been reported for the largest periods of the Earth’s history: Hadean (4.6–3.9 Ga), Early Archean (3.9–3.3 Ga), Late Archean (3.3–2.6 Ga), Early Proterozoic (2.6–1.9 Ga), Middle Proterozoic (1.9–1.1 Ga), Neoproterozoic (1.1–0.6 Ga), and Phanerozoic with two substages of 0.6–0.3 and 0.3–0 Ga.Current geodynamics is discussed with reference to models of spreading, subduction, and plume activity. Spreading is considered in terms of double-layered mantle convection, with focus on processes in the vicinity of mid-ocean ridges. The problem of mafic melt migration through the upper mantle beneath spreading ridges is treated qualitatively. Main emphasis is placed on models of melting, comparison of experimental and observed melt compositions, and their variations in periods of magmatic activity (about 100 kyr long) and quiescence. The extent and ways of interaction of fluids and melts rising from subduction zones with the ambient mantle remain the most controversial. Plume magmatism is described with a “gas torch” model of thermochemical plumes generated at the core-mantle boundary due to local chemical doping with volatiles (H2, CH2, KH, etc.) which are released from the metallic outer core, become oxidized in the lower mantle, and decrease the melting point of the latter. The concluding section concerns periodicities in endogenous processes and their surface consequences, including the related biospheric evolution.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3