Acoustic properties of hydrate-bearing sand samples: laboratory measurements (setup, methods, and results)

Author:

Duchkov A.D.1,Duchkov A.A.12,Permyakov M.E.1,Manakov A.Yu.32,Golikov N.A.1,Drobchik A.N.1

Affiliation:

1. A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

3. A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva 3, Novosibirsk, 630090, Russia

Abstract

Abstract A new system has been designed for laboratory physical modeling of hydrate-bearing sand samples and measuring their acoustic properties at different temperatures and pressures. The system includes a pressure vessel, units of temperature control, external pressure, and gas/liquid delivery, and a unit for measuring velocities of acoustic waves. Measurements are carried out in 10–50 mm high cylindrical specimens 30 mm in diameter. The system provides methane hydrate formation in sand samples and their acoustic measurements for as long as several days due to automatic control. Hydrate-bearing samples are prepared by pressurized methane injection into pores of wet sand and are exposed to several cooling/heating cycles to increase hydrate formation rates. Hydrate-bearing samples have been prepared and travel times of acoustic P and S waves have been measured in dozens of successful experiments. Acoustic data confirm the formation of hydrates, with the related increase in wave velocities to values about those in frozen sediments. The prepared gas hydrates are inferred to be of “cementing” type, i.e., they form as cement at the boundaries of mineral grains. The obtained velocities of acoustic waves show a positive linear correlation with hydrate contents in sand samples.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3