Mineralogical, geochemical, and age characteristics of the rocks of the Inagli dunite–clinopyroxenite–shonkinite massif with platinum–chromite and Cr-diopside mineralization (Aldan Shield)

Author:

Okrugin A.V.1,Borisenko A.S.2,Zhuravlev A.I.1,Travin A.V.2

Affiliation:

1. Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences, pr. Lenina 39, Yakutsk, 677980, Russia

2. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

Abstract

Abstract We consider the mineralogical and geochemical features of the rocks of the Inagli dunite–clinopyroxenite–shonkinite massif with platinum–chromite and unique jewelry Cr-diopside mineralization, which is a reference object of concentric zonal complexes. The massif rocks, from dunites to pulaskites, including peridotites, clinopyroxenites, shonkinites, and melanocratic alkali syenites, form a single continuous comagmatic series. This is confirmed by a clear dependence of the compositions of olivine, pyroxene, phlogopites, and Cr-spinels on the MgO content of the rocks and on the behavior of trace elements in them. The similar compositions of pyroxenes and trace-element patterns of clinopyroxenite rocks and Cr-diopsidite veins indicate a genetic similarity of these rocks. The age and mineralogical and geochemical compositions of the rocks and the geologic and morphological features of the intrusion prove that the Inagli massif formed from high-K picritoid melts, which underwent gradual decompression solidification during the ascent and formed a cylindrical diapir-like body at the subsurface level in the Early Cretaceous. The new portions of differentiates supplied from the lower horizons of the magma column determined the complex composition of the massif: It has a concentric zonal structure cut by numerous radial-circular vein bodies of pegmatites and pure anchimonomineral rocks (Cr-diopsidites), in places, of jewelry quality.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3