Polygenesis of mafic–ultramafic complexes: Isotope-geochronological and geochemical evidence from zircons of the Berezovka massif rocks (Sakhalin Island)

Author:

Lesnov F.P.1,V.V Khlestov12,Gal’versen V.G.3,Sergeev S.A.45

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

3. Sakhalin Geological-Prospecting Expedition, ul. A. Matrosova 28, Yuzhno-Sakhalinsk, 693005, Russia

4. A.P. Karpinsky Russian Geological Research Institute, Srednii prosp. 74, St. Petersburg, 199106, Russia

5. St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia

Abstract

Abstract Results of comprehensive isotope-geochronological (U–Pb dating; SHRIMP II) and geochemical (LA–ICP-MS) studies of zircons from different rocks of the Berezovka polygenetic mafic–ultramafic massif of the East Sakhalin ophiolite association are presented. The massif includes three proximal but genetically autonomous structure-lithologic complexes of different ages: protrusion of ultramafic rocks of restite nature, gabbroid intrusion breaking through it, and contact reaction zone located along their boundaries. The isotopic age of zircons in the massif as a whole and in its individual rocks varies over a broad range of values. The zircons belong to several populations according to their age (Ma) and other features: relict and xenogenous (∼ 3100–990, 70–410, and ∼ 395–210) and syngenetic (∼ 200–100, ∼ 90–65, and ∼ 30–20). They differ in grain size and morphology, optical and cathodoluminescence images, and trace-element patterns. By morphology, the grains are divided into short-prismatic crystals with well-developed faces and edges, long-prismatic crystals with well-developed faces and edges, prismatic crystals with slightly resorbed faces and edges, prismatic crystals with strongly resorbed faces and edges, and intensely resorbed grains totally or partly lacking faceting. The ages of zircons depend inversely on the contents of La, Ce, and Yb, total contents of REE, (Ce/Ce*)n, and (Eu/Eu*)n. Some grains are characterized by abnormal REE and trace-element patterns due to their epigenetic redistribution. The wide scatter of the intermediate ages of relict and xenogenous zircon grains, their resorption and disturbed optical and geochemical features are probably due to the nonuniform rejuvenation of their isotope systems and variations in other parameters, caused by the effect of younger mafic melt and its fluids, whose crystallization gave rise to a gabbroid intrusion dated at 170–150 Ma. The obtained data on the isotopic age and other properties of zircons from the rocks of the Berezovka massif agree with the geological model of its polygenesis.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3