1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 10.48550/arXiv.1603.04467.
2. Convolutional neural networks for vibrational spectroscopic data analysis;Acquarelli;Anal. Chim. Acta,2017
3. Efficiency of near-infrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process;Albrecht;Bioresour. Technol.,2008
4. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays;Angelidaki;Water Sci. Technol.,2009
5. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra;Barnes;Appl. Spectrosc.,1989