1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. URL: https://www.tensorflow.org/.software available from tensorflow.org.
2. Spatial graph convolution neural networks for water distribution systems;Ashraf,2023
3. Least-cost design of water distribution networks under demand uncertainty;Babayan;J. Water. Resour. Plan. Manage,2005
4. Combinatorics and geometry of finite and infinite squaregraphs;Bandelt;SIAM. J. Discret. Math.,2010
5. Beers, L., Mulas, R., 2024. At the end of the spectrum: chromatic bounds for the largest eigenvalue of the normalized Laplacian. arXiv preprint arXiv:2402.09160.