TSG-Seg: Temporal-selective guidance for semi-supervised semantic segmentation of 3D LiDAR point clouds
-
Published:2024-10
Issue:
Volume:216
Page:217-228
-
ISSN:0924-2716
-
Container-title:ISPRS Journal of Photogrammetry and Remote Sensing
-
language:en
-
Short-container-title:ISPRS Journal of Photogrammetry and Remote Sensing
Author:
Xuan WeihaoORCID, Qi HeliORCID, Xiao AoranORCID
Reference60 articles.
1. Ao, S., Hu, Q., Yang, B., Markham, A., Guo, Y., 2021. Spinnet: Learning a general surface descriptor for 3d point cloud registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11753–11762. 2. Least-squares fitting of two 3-D point sets;Arun;IEEE Trans. Pattern Anal. Mach. Intell.,1987 3. Aygun, M., Osep, A., Weber, M., Maximov, M., Stachniss, C., Behley, J., Leal-Taixé, L., 2021. 4d panoptic lidar segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5527–5537. 4. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J., 2019. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9297–9307. 5. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O., 2020. nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11621–11631.
|
|