1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, CoRR abs/1603.0.
2. Bermudez, J.D., Happ, P.N., Oliveira, D.A.B., Feitosa, R.Q., 2018. SAR to optical image synthesis for cloud removal with generative adversarial networks. ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci., IV-1, 2018, pp. 5–11.
3. Synthesis of Multispectral Optical Images From SAR/Optical Multitemporal Data Using Conditional Generative Adversarial Networks;Bermudez;IEEE Geosci. Remote Sens. Lett.,2019
4. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model;Cheng;ISPRS J. Photogram. Remote Sens.,2014
5. The European Space Agency’s Earth observation program;Desnos;IEEE Geosci. Remote Sens. Magaz.,2014