1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: A system for large-scale machine learning, in: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016.
2. Adler, A., Boublil, D., Zibulevsky, M., 2017. Block-Based compressed sensing of images via deep learning, in: 2017 IEEE 19th International Workshop on Multimedia Signal Processing, MMSP 2017. https://doi.org/10.1109/MMSP.2017.8122281.
3. A study of forest biomass estimates from lidar in the northern temperate forests of New England;Ahmed;Remote Sens. Environ.,2013
4. Alonzo, M., Bookhagen, B., McFadden, J.P., Sun, A., Roberts, D.A., 2015. Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2015.02.025.
5. Compressive sensing based three-dimensional imaging method with electro-optic modulation for nonscanning laser radar;An;Symmetry (Basel).,2020