Author:
Cooper Colin,Frieze Alan,Radzik Tomasz
Subject
General Computer Science,Theoretical Computer Science
Reference15 articles.
1. D. Aldous, J. Fill, Reversible Markov Chains and Random Walks on Graphs. http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html.
2. R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász, C. Rackoff, Random walks, universal traversal sequences, and the complexity of maze problems, in: Proc. 20th Annual IEEE Symp. Foundations of Computer Science, 1979, pp. 218–223.
3. C. Avin, Y. Lando, Z. Lotker, Radio cover time in hyper-graphs, in: Proc. DIALM-POMC, Joint Workshop on Foundations of Mobile Computing, 2010, pp. 3–12.
4. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs;Bollobás;European Journal on Combinatorics,1980
5. J. Cong, L. Hagen, A. Kahng, Random walks for circuit clustering, in: Proc. 4th IEEE Intl. ASIC Conf., 1991, pp. 14.2.1–14.2.4.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sampling hypergraphs via joint unbiased random walk;World Wide Web;2024-02-19
2. Network Capacity Bound for Personalized PageRank in Multimodal Networks;Fundamenta Informaticae;2023-07-07
3. Random Walks;Variational and Diffusion Problems in Random Walk Spaces;2023
4. Complex Networks & Their Applications X;Studies in Computational Intelligence;2022
5. Hypergraph Laplacians in Diffusion Framework;Complex Networks & Their Applications X;2022