Prediction of concrete materials compressive strength using surrogate models
Author:
Publisher
Elsevier BV
Subject
Safety, Risk, Reliability and Quality,Building and Construction,Architecture,Civil and Structural Engineering
Reference51 articles.
1. Mix design of UHPFRC and its response to projectile impact;Máca;Int J Impact Eng,2014
2. The influence of normal curing temperature on the compressive strength development and flexural tensile behaviour of UHPFRC with vipulanandan model quantification;Hassan;Structures,2021
3. Effect of density on compressive strength of ultra high-performance fiber reinforced concrete (UHPFRC) using design of experiment;Mosaberpanah,2016
4. Evaluation of modulus of elasticity of ultra-high performance concrete;Alsalman;Constr Build Mater,2017
5. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC);Yang;Constr Build Mater,2009
Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Study on the design method of multi-component industrial solid waste low carbon cementitious material with cement as the activator;Case Studies in Construction Materials;2024-12
2. Machine learning for predicting compressive strength of sustainable cement paste incorporating copper mine tailings as supplementary cementitious materials;Case Studies in Construction Materials;2024-12
3. Interpretable constitutive compressive stress-strain model for rubberized aggregate concrete – Integrating comprehensive empirical database and efficient XGBoost ensemble learning;Case Studies in Construction Materials;2024-12
4. Prediction of concrete compressive strength using support vector machine regression and non-destructive testing;Case Studies in Construction Materials;2024-12
5. Machine learning models for estimating the compressive strength of rubberized concrete subjected to elevated temperature: Optimization and hyper-tuning;Sustainable Chemistry and Pharmacy;2024-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3