The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship

Author:

de Beer Z.W.,Duong T.A.,Wingfield M.J.

Abstract

One of the causal agents of human sporotrichosis, Sporothrix schenckii, is the type species of the genus Sporothrix. During the course of the last century the asexual morphs of many Ophiostoma spp. have also been treated in Sporothrix. More recently several DNA-based studies have suggested that species of Sporothrix and Ophiostoma converge in what has become known as Ophiostoma s. lat. Were the one fungus one name principles adopted in the Melbourne Code to be applied to Ophiostoma s. lat., Sporothrix would have priority over Ophiostoma, resulting in more than 100 new combinations. The consequence would be name changes for several economically important tree pathogens including O. novo-ulmi. Alternatively, Ophiostoma could be conserved against Sporothrix, but this would necessitate changing the names of the important human pathogens in the group. In this study, we sought to resolve the phylogenetic relationship between Ophiostoma and Sporothrix. DNA sequences were determined for the ribosomal large subunit and internal transcribed spacer regions, as well as the beta-tubulin and calmodulin genes in 65 isolates. The results revealed Sporothrix as a well-supported monophyletic lineage including 51 taxa, distinct from Ophiostoma s. str. To facilitate future studies exploring species level resolution within Sporothrix, we defined six species complexes in the genus. These include the Pathogenic Clade containing the four human pathogens, together with the S. pallida-, S. candida-, S. inflata-, S. gossypina- and S. stenoceras complexes, which include environmental species mostly from soil, hardwoods and Protea infructescences. The description of Sporothrix is emended to include sexual morphs, and 26 new combinations. Two new names are also provided for species previously treated as Ophiostoma.

Funder

National Research Foundation

Publisher

Westerdijk Fungal Biodiversity Institute

Subject

Agricultural and Biological Sciences (miscellaneous)

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3